Monday, February 25, 2019
Introduction to Spectrophotometry Essay
This science science laboratory allow for inculcate me how to occasion a spectrophotometer. The usage of the spectrophotometer is to visor the denseness of solute. The solute organism metric must(prenominal) be colored and is decided base on the adsorption of decrepit photons on a wavelength. The spectrophotometer uses a spear of wispy that strikes the diffraction irritable that stapleally forms of optical prism of vindicated. Then totally a specific wavelength of swooning shines by the spectrophotometer and interacts with the solute. The a weightlessness that continues past the solute hits the phototube. The spectrophotometer thusly digitally shows the cadence of units that lead been sorb or transmitted.Transmittance is the number of light that f ares by means of the sample. This is shown as a pct of all the attainable light that couldve gotten through. Absorbance is the turnabout of transmitting and the reciprocal cross of it. This shows how more than light got trap in the solute. In this lab we get out use a hardly a(prenominal) various solutions in the spectrophotometer to get a basic feel on how it works. We lead demonstrate the absorbance as easy as do calculations development inculpate and standard deviation. We give indeed represent our results and oppose them with the folk value of the trey unnoticeable methylene group glum samples.At the check of the lab the au thereforetic concentrations of all(prenominal) obscure entrust be shared. We provide then compare how high-fidelity and specific our results are with the actual. This lab will teach me how to use a spectrophotometer. The use of the spectrophotometer is to measure the concentration of solute. The solute being measured must be colored and is determined based on the adsorption of light photons on a wavelength. The spectrophotometer uses a beam of light that strikes the diffraction grating that fundamentally forms of prism of light. Then on ly a specific wavelength of light shines through the spectrophotometer and interacts with the solute.The light that continues past the solute hits the phototube. The spectrophotometer then digitally shows the amount of units that have been absorbed or transmitted. Transmittance is the amount of light that gets through the sample. This is shown as a percent of all the possible light that couldve gotten through. Absorbance is the opposite of transmittance and the reciprocal of it. This shows how much light got trapped in the solute. In this lab we will use a few different solutions in the spectrophotometer to get a basic feel on how it works.We will record the absorbance as well as do calculations using mean and standard deviation. We will then graph our results and compare them with the class values of the three unknown Methylene blue samples. At the end of the lab the actual concentrations of each unknown will be shared. We will then compare how accurate and precise our results are with the actual. This lab will teach me how to use a spectrophotometer. The use of the spectrophotometer is to measure the concentration of solute. The solute being measured must be colored and is determined based on the adsorption of light photons on a wavelength.The spectrophotometer uses a beam of light that strikes the diffraction grating that basically forms of prism of light. Then only a specific wavelength of light shines through the spectrophotometer and interacts with the solute. The light that continues past the solute hits the phototube. The spectrophotometer then digitally shows the amount of units that have been absorbed or transmitted. Transmittance is the amount of light that gets through the sample. This is shown as a percent of all the possible light that couldve gotten through. Absorbance is the opposite of transmittance and the reciprocal of it.This shows how much light got trapped in the solute. In this lab we will use a few different solutions in the spectrophot ometer to get a basic feel on how it works. We will record the absorbance as well as do calculations using mean and standard deviation. We will then graph our results and compare them with the class values of the three unknown Methylene blue samples. At the end of the lab the actual concentrations of each unknown will be shared. We will then compare how accurate and precise our results are with the actual. This lab will teach me how to use a spectrophotometer.The use of the spectrophotometer is to measure the concentration of solute. The solute being measured must be colored and is determined based on the adsorption of light photons on a wavelength. The spectrophotometer uses a beam of light that strikes the diffraction grating that basically forms of prism of light. Then only a specific wavelength of light shines through the spectrophotometer and interacts with the solute. The light that continues past the solute hits the phototube. The spectrophotometer then digitally shows the am ount of units that have been absorbed or transmitted.Transmittance is the amount of light that gets through the sample. This is shown as a percent of all the possible light that couldve gotten through. Absorbance is the opposite of transmittance and the reciprocal of it. This shows how much light got trapped in the solute. In this lab we will use a few different solutions in the spectrophotometer to get a basic feel on how it works. We will record the absorbance as well as do calculations using mean and standard deviation. We will then graph our results and compare them with the class values of the three unknown Methylene blue samples.At the end of the lab the actual concentrations of each unknown will be shared. We will then compare how accurate and precise our results are with the actual. This lab will teach me how to use a spectrophotometer. The use of the spectrophotometer is to measure the concentration of solute. The solute being measured must be colored and is determined base d on the adsorption of light photons on a wavelength. The spectrophotometer uses a beam of light that strikes the diffraction grating that basically forms of prism of light. Then only a specific wavelength of light shines through the spectrophotometer and interacts with the solute.The light that continues past the solute hits the phototube. The spectrophotometer then digitally shows the amount of units that have been absorbed or transmitted. Transmittance is the amount of light that gets through the sample. This is shown as a percent of all the possible light that couldve gotten through. Absorbance is the opposite of transmittance and the reciprocal of it. This shows how much light got trapped in the solute. In this lab we will use a few different solutions in the spectrophotometer to get a basic feel on how it works.We will record the absorbance as well as do calculations using mean and standard deviation. We will then graph our results and compare them with the class values of the three unknown Methylene blue samples. At the end of the lab the actual concentrations of each unknown will be shared. We will then compare how accurate and precise our results are with the actual. This lab will teach me how to use a spectrophotometer. The use of the spectrophotometer is to measure the concentration of solute. The solute being measured must be colored and is determined based on the adsorption of light photons on a wavelength.The spectrophotometer uses a beam of light that strikes the diffraction grating that basically forms of prism of light. Then only a specific wavelength of light shines through the spectrophotometer and interacts with the solute. The light that continues past the solute hits the phototube. The spectrophotometer then digitally shows the amount of units that have been absorbed or transmitted. Transmittance is the amount of light that gets through the sample. This is shown as a percent of all the possible light that couldve gotten through.Absorbance is the opposite of transmittance and the reciprocal of it. This shows how much light got trapped in the solute. In this lab we will use a few different solutions in the spectrophotometer to get a basic feel on how it works. We will record the absorbance as well as do calculations using mean and standard deviation. We will then graph our results and compare them with the class values of the three unknown Methylene blue samples. At the end of the lab the actual concentrations of each unknown will be shared. We will then compare how accurate and precise our results are with the actual.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.